Conjugate-Computation Variational Inference: Converting Variational Inference in Non-Conjugate Models to Inferences in Conjugate Models
نویسندگان
چکیده
Variational inference is computationally challenging in models that contain both conjugate and non-conjugate terms. Methods specifically designed for conjugate models, even though computationally efficient, find it difficult to deal with non-conjugate terms. On the other hand, stochastic-gradient methods can handle the nonconjugate terms but they usually ignore the conjugate structure of the model which might result in slow convergence. In this paper, we propose a new algorithm called Conjugate-computation Variational Inference (CVI) which brings the best of the two worlds together – it uses conjugate computations for the conjugate terms and employs stochastic gradients for the rest. We derive this algorithm by using a stochastic mirrordescent method in the mean-parameter space, and then expressing each gradient step as a variational inference in a conjugate model. We demonstrate our algorithm’s applicability to a large class of models and establish its convergence. Our experimental results show that our method converges much faster than the methods that ignore the conjugate structure of the model.
منابع مشابه
Variational Inference on Deep Exponential Family by using Variational Inferences on Conjugate Models
In this paper, we propose a new variational inference method for deep exponentialfamily (DEF) models. Our method converts non-conjugate factors in a DEF model to easy-to-compute conjugate exponential-family messages. This enables local and modular updates similar to variational message passing, as well as stochastic natural-gradient updates similar to stochastic variational inference. Such upda...
متن کاملKullback-Leibler Proximal Variational Inference
We propose a new variational inference method based on a proximal framework that uses the Kullback-Leibler (KL) divergence as the proximal term. We make two contributions towards exploiting the geometry and structure of the variational bound. Firstly, we propose a KL proximal-point algorithm and show its equivalence to variational inference with natural gradients (e.g. stochastic variational in...
متن کاملBayesian Models of Data Streams with Hierarchical Power Priors
Making inferences from data streams is a pervasive problem in many modern data analysis applications. But it requires to address the problem of continuous model updating, and adapt to changes or drifts in the underlying data generating distribution. In this paper, we approach these problems from a Bayesian perspective covering general conjugate exponential models. Our proposal makes use of non-...
متن کاملGibbs Sampling for Logistic Normal Topic Models with Graph-Based Priors
Previous work on probabilistic topic models has either focused on models with relatively simple conjugate priors that support Gibbs sampling or models with non-conjugate priors that typically require variational inference. Gibbs sampling is more accurate than variational inference and better supports the construction of composite models. We present a method for Gibbs sampling in non-conjugate l...
متن کاملFast Variational Inference in the Conjugate Exponential Family
We present a general method for deriving collapsed variational inference algorithms for probabilistic models in the conjugate exponential family. Our method unifies many existing approaches to collapsed variational inference. Our collapsed variational inference leads to a new lower bound on the marginal likelihood. We exploit the information geometry of the bound to derive much faster optimizat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017